# PRICING MORTGAGE STRESS – LESSONS FROM HURRICANES AND CREDIT RISK TRANSFER SECURITIES

#### **Authors:**

Pedro Gete (IE Business School) Athena Tsouderou (IE Business School) Susan Wachter (Wharton)

#### **Discussion:**

Fabrice Tourre (Copenhagen Business School)

October 29, 2021

## THE PAPER IN ONE SLIDE

#### Motivation

- How do markets price mortgage credit risk related to natural disasters?
- How would mortgage rates behave absent credit insurance supplied by Fannie/Freddie?

# What the paper does

- Study price behavior of CRT securities during hurricane Harvey and Irma via diff-in-diff analysis, exploiting CRTs' cross-sectional differences in exposure to hurricane-hit areas
- · Build mortgage credit model
- Use calibrated model to quantify subsidy to hurricane-prone areas from uniform G-fees
- Use calibrated model to study time-series variation in hypothetical mortgage rates where credit risk is priced by private market

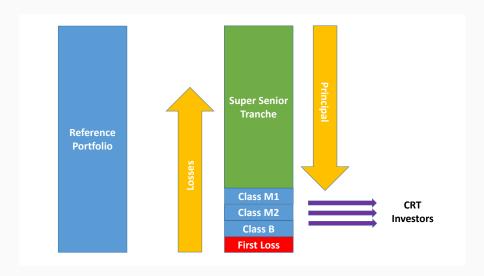
#### MORTGAGE PRICING MODEL

# Framework (at least my understanding of it)

- Exponentially amortizing mortgage, floating rate (?)
- · Exogenous short rate process, no prepayment option
- Exogenous default intensity ( $\pi_t$ ) and loss-given-default ( $\ell_t$ )
- · Perfectly competitive, risk-neutral credit insurance sector
- Credit insurance premium (s<sub>t</sub>)

When all processes are constant (my calculations),  $s = \pi \ell$ 

# FROM CRT PRICES TO MARKET-IMPLIED MORTGAGE CREDIT SPREADS


## What this paper does

- Uses increase in (a) observed credit spreads of junior CRT tranches and (b) delinquencies due to hurricane realization;
- · Uses the previous mortgage credit pricing model;
- Estimates incremental default probability due to hurricane risk;
- Backs out "market-implied" credit cost for hypothetical mortgages originated in hurricane-prone coastal areas

## Statistical measure $\mathbb{P}$ vs. risk-neutral measure $\mathbb{Q}$ ?

- Mortgage pricing model features risk-neutral investors without "priced" aggregate risks
- Do we need CRT securities' market price to estimate incremental credit cost due to hurricane risk?
  - If hurricane risk is not "priced", no difference between  $\mathbb{P}$  and  $\mathbb{Q}$ ;
  - Mortgage average default rate: 1.78bps p.a.
  - 1 hurricane/year increases baseline hazard rate by 57%
  - $\Rightarrow$  Incremental yearly loss rate = 57%  $\times$  1.78bps  $\times$  LGD

# FROM CRT PRICES TO MARKET-IMPLIED MORTGAGE CREDIT SPREADS



# FROM CRT PRICES TO MARKET-IMPLIED MORTGAGE CREDIT SPREADS

# What if aggregate risk is priced?

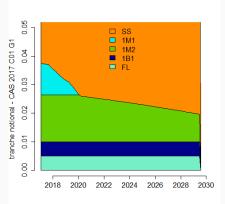
 To estimate market-implied pricing of different mortgage credit products, need to rely on pricing of all CRT tranches

#### Without information on all CRT Tranches?

- · Market-implied measures becomes highly "model-dependent"
- Example:
  - Portfolio of 2 mortgages (default probability  $p_i$ , default correlation  $\rho$ )
  - LGD of 100%
  - First-loss tranche o-50 and Super-senior tranche 50-100

$$\begin{aligned} EL_{FL} &= p_1 + p_2 - p_1 p_2 - \rho \sqrt{p_1 p_2 (1 - p_1)(1 - p_2)} \\ EL_{SS} &= p_1 p_2 + \rho \sqrt{p_1 p_2 (1 - p_1)(1 - p_2)} \end{aligned}$$

- If  $\uparrow EL_{FL}$ , is this due to  $\uparrow p_i$ , or  $\downarrow \rho$ ?
- "Real-world" example: May 2005 auto/credit correlation crisis


#### WHAT ABOUT PREPAYMENT RISK?

In the model: no prepayment option

In the data: Agency FRM with prepayment option

- Agency FRMs exhibit negative interest rate convexity...
- ... and thus (potentially significant) negative credit convexity:
  - Given LLPA matrix pricing, when borrower's credit conditions improve, borrower more likely to prepay, thus extinguishing the premium earned by protection seller;
  - Given DTI and other requirement for QM mortgages, when borrower's economic conditions deteriorate, borrower less likely to prepay, thus extending duration of credit risk taken by protection seller.
- But credit convexity could also go the other way:
  - In bad economic environment with high default rates, Fed QE program leads to a drop in long term rates and wave of refinancings...

## **TRANCHE EXPOSURE TO PREPAYMENTS**



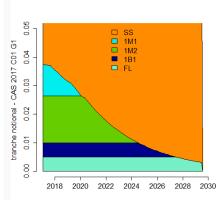



Figure 1: 0% CPR

Figure 2: 20% CPR

# **DELINQUENCIES VS. REALIZED LOSSES**

In the paper: focus is on mortgage delinquencies

In the contractual structure of CRTs: payoff linked to realized losses

|                   | Current Loan Status |       |       |       |       |       |        | Pipeline |         | Pool Removal |        |         |         |
|-------------------|---------------------|-------|-------|-------|-------|-------|--------|----------|---------|--------------|--------|---------|---------|
| Prior Loan Status | Current             | D30   | D60   | D90   | D120  | D150  | D180+  | Modified | REO Acq | Credit Event | Defect | Prepaid | Total   |
| Current           | 60.47%              | 0.52% | 0.23% | 0.19% | 0.17% | 0.18% | 1.89%  | 0.01%    | 0.00%   | 0.08%        | 0.01%  | 36.25%  | 100.00% |
| D30               | 50.19%              | 9.07% | 3.07% | 1.95% | 1.60% | 1.50% | 14.09% | 0.15%    | 0.02%   | 0.69%        | 0.09%  | 17.58%  | 100.00% |
| D60               | 33.27%              | 8.92% | 6.15% | 3.93% | 2.92% | 2.69% | 26.20% | 0.44%    | 0.11%   | 2.57%        | 0.05%  | 12.76%  | 100.00% |
| D90               | 30.19%              | 6.16% | 4.57% | 3.68% | 2.79% | 2.57% | 31.55% | 0.33%    | 0.32%   | 5.89%        | 0.20%  | 11.74%  | 100.00% |
| D120              | 24.83%              | 5.97% | 3.96% | 3.45% | 2.77% | 2.57% | 32.52% | 1.22%    | 0.58%   | 8.76%        | 0.12%  | 13.25%  | 100.00% |
| D150              | 27.65%              | 4.67% | 3.09% | 2.35% | 2.01% | 2.88% | 36.45% | 0.42%    | 0.54%   | 8.55%        | 0.21%  | 11.17%  | 100.00% |
| D180+             | 19.22%              | 3.27% | 1.75% | 1.55% | 0.77% | 1.50% | 44.89% | 0.75%    | 2.45%   | 12.80%       | 0.21%  | 10.84%  | 100.00% |
| Mod               | 48.65%              | 8.76% | 4.45% | 2.16% | 2.22% | 1.28% | 24.75% |          |         | 0.22%        | 0.49%  | 7.02%   | 100.00% |