DYNAMIC BANKING WITH NON-MATURING DEPOSITS

Authors:

Urban Jermann (Wharton School of Business)
Haotian Xiang (Guanghua School of Management)

Discussion:

Fabrice Tourre (Copenhagen Business School)

August 27, 2021

WHAT THE PAPER DOES

Motivation

- Study banks' deposit issuance behavior when deposits' effective maturity depends on bank's credit worthiness;
- Study how bank leverage and default risk react to interest rate and to asset-side shocks
- Study how a regulator (with or without commitment) would alter deposit issuance behavior to improve aggregate outcomes

Key idea / ingredients

- With frictions, bank deposits behave like term debt, thus subject to dilution risk
- Bank's commitment problem interacts in complex ways with state-dependent deposit withdrawal intensity

COMMITMENT PROBLEM IN (SIMPLE) BANKING MODEL

Banking model

- Asset cash-flows y_t follow (μ, σ) GBM dynamics
- Deposits b_t get "liquidity benefits" ℓ , priced at q_t
- Deposit withdrawal intensity λ (constant for now)
- No commitment: $db_t = (G_t \lambda b_t) dt$

Problem

$$E(y,b) = \sup_{G,\tau} \mathbb{E}\left[\int_0^\tau e^{-rt} \left(y_t + G_t q_t - \lambda b_t\right) dt\right]; \qquad q(y,b) = \mathbb{E}\left[\int_0^\tau e^{-(r+\lambda)t} (\ell+\lambda) dt\right]$$

Coasian outcome with state variable $x_t := b_t/y_t$

- Issuance rate $G_t = g(x_t)y_t = \left(\frac{\ell}{-q'(x_t)} \right) y_t$
- Default cutoff \bar{x}
- Attraction point x_a

DEPOSIT PRICING AND DEPOSIT ISSUANCE RATE

DEPOSIT PRICING AND DEPOSIT ISSUANCE RATE

Sensitivity to deposit withdrawal intensity λ

FIRST BEST IN (SIMPLE) BANKING MODEL

Problem of regulator without commitment

$$\begin{split} W(y,b) &:= \sup_{\Gamma} \mathbb{E}^{y,b} \left[\int_{o}^{\tau} e^{-rt} \left[y_{t} + \ell b_{t} \right] dt \right], \\ \text{s.t. } db_{t} &= d\Gamma_{t} - \lambda b_{t} dt; \qquad \tau := \inf\{t \geq o : E(y_{t},b_{t}) \leq o\} \\ E(y,b) &:= \sup_{\tau} \mathbb{E}^{y,b} \left[\int_{o}^{\tau} e^{-rt} \left[y_{t} - \lambda b_{t} \right] dt + \int_{o}^{\tau} e^{-rt} Q(y_{t},b_{t}) d\Gamma_{t} \right] \\ Q(y,b) &:= \mathbb{E}^{y,b} \left[\int_{o}^{\tau} e^{-(r+\lambda)t} \left(\ell + \lambda \right) dt \right] \end{split}$$

First best issuance policy

- issue lump amount of deposit $d\Gamma_0 = x^*y_0$ at t = 0;
- issue/buy back deposits at t > 0 so that $x_t = x^*$ constant;
- · bank shareholders indifferent between defaulting or continuing;
- deposits are risk free, with price $ar{q} = rac{\ell + \lambda}{r + \lambda}$
- $x^* = \frac{1}{\lambda (\lambda + \mu)\bar{a}}$ (well defined if ℓ is not "too high")
- Regulator with commitment achieves same outcome(!)

BANKING MODEL WITH ENDOGENOUS WITHDRAWAL INTENSITY

Banking model

- Asset cash-flows y_t follow (μ, σ) GBM dynamics
- Deposits b_t get "liquidity benefits" $\ell(q_t)$, with $\ell'(q) > 0$, priced at q_t
- Deposit withdrawal intensity $\lambda(q_t)$, with $\lambda'(q) < 0$
- No commitment: $db_t = (G_t \lambda(q_t)b_t) dt$

Problem

$$E(y,b) = \sup_{G,\tau} \mathbb{E}\left[\int_0^\tau e^{-rt} \left(y_t + G_t q_t - \lambda(q_t) b_t\right) dt\right]; \quad q(y,b) = \mathbb{E}\left[\int_0^\tau e^{-\int_0^t (r + \lambda(q_s)) ds} (\ell + \lambda(q_t)) dt\right]$$

If "smooth" MPE exists...

- · Coasian outcome remains
- Issuance rate $G_t = g(x_t)y_t$
- $g(x) = \frac{\ell(q)}{-q'} + (1-q)x\lambda'(q) \rightarrow \text{issuance rate tilted downwards!}$

THEORY

Debt/deposit issuances without commitment

- · Coasian result relatively standard in corporate finance literature
- Discrete time: still some commitment maybe move to continuous time to entirely remove commitment?

Robustness of results?

- Mostly numerical results
- Some of the results (for example the difference between the Ramsey and Markov perfect regulators) potentially dependent upon specific asset process assumed
- Lack of sharp theoretical results to make reader fully comfortable
 - theoretical analysis mostly focusing on "local deviations"
 - · existence of the MPE?
 - · uniqueness of the MPE?

EMPIRICS: IS THIS THE RIGHT MODEL OF A BANK?

Deposit issuances

- In the model, controlled by the bank
- In practice, very difficult for banks to control precisely their (retail) deposit funding
- Time-series variation in (retail) demand deposit mostly orthogonal to banks' credit spreads (except in the very rare event of a "run")

Proceeds from deposit issuances

- In the model, used to pay dividends to shareholders
- In practice, banks acquire additional assets and originate additional loans