INTERMEDIARY LOAN PRICING

Authors:

Pierre Mabille (INSEAD)
Olivier Wang (NYU Stern)

Discussion:

Fabrice Tourre (Copenhagen Business School)

February 8, 2021

WHAT THE PAPER DOES

Motivation

- Study prices and non-price terms for loans in equilibrium model with competitive banks and heterogeneous borrowers
- · How prices and non-price terms vary with borrower characteristics
- How prices and non-price terms change with aggregate shocks

Key idea / ingredients

- Loan rates affect default probability \rightarrow payoff "endogenous" to prices
- Non-Walrasian world where banks offer contracts over (R, ℓ, z)
- Non-price loan terms $(\ell,z) o$ additional tool above/beyond rates (R)

Key results

- Response to above questions depends on 2 key elasticities
 - ϵ_{ℓ^*} : elasticity of borrower's loan demand (to rates)
 - ϵ_r : elasticity of repayment proba. to debt face value
- Formula for pass-through of monetary and credit supply shocks
- · Application to the US mortgage market pre-2008

MULTI-DIMENSIONAL LOAN CONTRACTING

Bank contracting problem

$$\begin{aligned} \max_{\substack{x_i,R_i,\ell_i\\ \text{s.t.}}} & & \int x_i\ell_i \left[R_i \left(1 - \mu_i \left(R_i\ell_i \right) \right) - R_f \right] di \\ \text{s.t.} & & \int x_i\rho_i\ell_i di \leq \overline{L} & \text{and} & V_i \left(\ell_i,R_i \right) \geq \overline{V}_i \end{aligned}$$

Symmetric equilibrium

$$\begin{split} \frac{\epsilon_{r,i}\left(R_{i}\ell_{i}\right)}{1-\epsilon_{r,i}\left(R_{i}\ell_{i}\right)} &= \tau_{i}\left(R_{i},\ell_{i}\right) \quad \rightarrow \ell_{i}^{*}\left(R_{i}\right) \\ R_{i}\left(1-\mu_{i}\left(R_{i}\ell_{i}\right)\right)-R_{f} &= \rho_{i}\nu \quad \forall i \quad \rightarrow R_{i}^{*}\left(\ell_{i}\right) \end{split} \qquad \text{("risk-return" trade-off)} \end{split}$$

Comparison: ϵ_{ℓ^*} vs. ϵ_{ℓ_u}

Virtual loan demand elasticity (as a function of IES, cash on hand, income)

AGGREGATE SHOCKS

Aggregate shock (approximate) pass-through

credit supply:
$$\frac{d \log L_i}{d \log \overline{L}}$$
 and $\frac{d \log R_i}{d \log \overline{L}}$
monetary policy: $\frac{d \log L_i}{d \log R_f}$ and $\frac{d \log R_i}{d \log R_f}$

Suggestion \rightarrow study changes in regulatory risk weights (Basel III...)

Consequence for different markets (high vs. low elasticity)

Consequence in dynamic model

- high ϵ_{ℓ^*} mkts: high $\Delta \nu_0$ but short T
- low ϵ_{ℓ^*} mkts: low $\Delta \nu_0$ but long T

COMMENTS - PART 1

How do we measure those elasticities?

- Empirical estimates of loan demand elasticities: ϵ_{ℓ^*} ? $\tilde{\epsilon}_{\ell^*}$? $\tilde{\epsilon}_{\ell_{\ell}}$? $\epsilon_{\ell_{u}}$?
- · Empirical elasticities all over the place
 - Fuster & Zafar (2021): $\epsilon_{\ell^*} pprox$ 0.11 from survey data
 - DeFusco & Paciorek (2017): $\epsilon_{\ell^*} pprox$ 1.75 using bunching at conforming limit
 - Fuster & Willen (2017): $\epsilon_r \approx$ 1.1 using hybrid ARM reset identification
 - DiMaggio & al (2017): $\epsilon_r pprox$ 2 using hybrid ARM reset identification

Short term vs. long term debt

- ℓ_i and R_i influence default probability only via face value $\ell_i R_i$;
- · Well suited for one-period debt;
- In practice however, most debt contracts are long term;
- In many economic settings (sovereign debt, Leland models), R and ℓ have differential impacts on default probability.

COMMENTS - PART 2

Is the US mortgage market well suited to apply this theory?

- 2002-2007
 - agency mortgages (30-yr fixed-rate prepayable into agency MBS mkt)
 - · hybrid ARMs (securitized into Alt-A and subprime RMBS mkt)
- since 2008, mostly agency mortgages
 - · non-bank originators slowly becoming dominant;
 - · rates mostly driven by prepayment risk in agency MBS mkt;
 - · mortgage rates cross-sectional variation reflects mostly LLPA matrix;
 - · LTV significantly influenced by conforming mortgage limit & LLPA matrix
 - PTI driven by QM rules introduced by CFPB

Potential alternative approach

- Focus on specific credit market where credit risk is priced by competitive private market;
- Take identified monetary policy shocks and look at priced and non-priced loan terms' response
- Use your framework to recovery economically interesting parameters