Expected Currency Depreciation upon Sovereign Default Della Corte, Dias Saraiva-Patelli & Jeanneret

Discussion: Fabrice Tourre

Copenhagen Business School

September 2018

▶ Defines and measures Implied Currency Depreciation ("ICD") conditional on sovereign default

- Defines and measures Implied Currency Depreciation ("ICD") conditional on sovereign default
- ► Shows that greater levels of ICD today are associated with larger future EUR/USD returns
 - short to medium-term horizons
 - even after controlling for liquidity, FX vol, VRP, global currency factors...
 - robust to different definitions of ICD

- Defines and measures Implied Currency Depreciation ("ICD") conditional on sovereign default
- Shows that greater levels of ICD today are associated with larger future EUR/USD returns
 - short to medium-term horizons
 - even after controlling for liquidity, FX vol, VRP, global currency factors...
 - robust to different definitions of ICD
- Performs out-of-sample tests of predictability and shows that
 - ► RMSE(ICD) < RMSE(random walk) (5% conf. level)

- Defines and measures Implied Currency Depreciation ("ICD") conditional on sovereign default
- Shows that greater levels of ICD today are associated with larger future EUR/USD returns
 - short to medium-term horizons
 - even after controlling for liquidity, FX vol, VRP, global currency factors...
 - robust to different definitions of ICD
- Performs out-of-sample tests of predictability and shows that
 - ► RMSE(ICD) < RMSE(random walk) (5% conf. level)
- Looks at determinants of ICD
 - negatively related to sovereign CDS
 - positively related to FX option-implied vols
 - negatively related to realized local equity market returns
 - negatively related to measures of liquidity in funding markets

	1 week	1 month	3 months	6 months	1 year		1 week	1 month	3 months	6 months	1 year		
Panel	A: no con	trols				Panel	B: contro	ling for IR	D				
ICD_t	0.749**	0.673*	0.667***	0.840***	0.691***	ICD _t	0.794**	0.670*	0.716***	0.933***	0.683***		
t-stat	[1.963]	[1.905]	[2.691]	[3.656]	[5.477]	t-stat	[2.039]	[1.888]	[2.903]	[4.180]	[4.566]		
R^2	0.008	0.031	0.103	0.314	0.378	\mathbb{R}^2	0.009	0.029	0.115	0.375	0.391		
N	1663	1647	1605	1542	1416	N	1605	1589	1547	1484	1358		
Panel	C: control	ling for liq	uidity			Panel D: controlling for uncertainty							
ICD_t	0.802**	0.644*	0.646**	0.861***	0.689***	ICD_t	0.984**	0.766**	0.839***	1.030***	0.548***		
t-stat	[2.073]	[1.825]	[2.465]	[3.655]	[6.488]	t-stat	[2.416]	[2.252]	[3.720]	[8.103]	[2.762]		
\mathbb{R}^2	0.013	0.056	0.125	0.330	0.459	R ²	0.023	0.090	0.292	0.652	0.503		
N	1635	1619	1577	1514	1388	N	1377	1361	1319	1256	1130		
Panel	Panel E: controlling for global factors						Panel F: controlling for all						
ICD_t	0.783**	0.673*	0.715***	0.920***	0.713***	ICD _t	0.986**	0.726**	0.840***	1.080***	0.569***		
t-stat	[2.013]	[1.893]	[2.833]	[3.978]	[5.383]	t-stat	[2.408]	[2.199]	[3.724]	[10.053]	[5.367]		
R^2	0.017	0.031	0.111	0.340	0.359	\mathbb{R}^2	0.039	0.154	0.390	0.755	0.644		
N	1605	1589	1547	1484	1358	N	1361	1345	1303	1240	1114		

	1 week	1 month	3 months	6 months	1 year		1 week	1 month	3 months	6 months	1 year		
Panel	A: no con	trols				Panel	B: contro	ling for IR	D				
ICD_t	0.749**	0.673*	0.667***	0.840***	0.691***	ICD_t	0.794**	0.670*	0.716***	0.933***	0.683***		
t-stat	[1.963]	[1.905]	[2.691]	[3.656]	[5.477]	t-stat	[2.039]	[1.888]	[2.903]	[4.180]	[4.566]		
\mathbb{R}^2	0.008	0.031	0.103	0.314	0.378	R ²	0.009	0.029	0.115	0.375	0.391		
N	1663	1647	1605	1542	1416	N	1605	1589	1547	1484	1358		
Panel	Panel C: controlling for liquidity						Panel D: controlling for uncertainty						
ICD_t	0.802**	0.644*	0.646**	0.861***	0.689***	ICD_t	0.984**	0.766**	0.839***	1.030***	0.548***		
t-stat	[2.073]	[1.825]	[2.465]	[3.655]	[6.488]	t-stat	[2.416]	[2.252]	[3.720]	[8.103]	[2.762]		
R^2	0.013	0.056	0.125	0.330	0.459	R ²	0.023	0.090	0.292	0.652	0.503		
N	1635	1619	1577	1514	1388	N	1377	1361	1319	1256	1130		
Panel	E: control	ling for glo	bal factors			Panel	F: control	ling for all					
ICD_t	0.783**	0.673*	0.715***	0.920***	0.713***	ICD_t	0.986**	0.726**	0.840***	1.080***	0.569***		
t-stat	[2.013]	[1.893]	[2.833]	[3.978]	[5.383]	t-stat	[2.408]	[2.199]	[3.724]	[10.053]	[5.367]		
\mathbb{R}^2	0.017	0.031	0.111	0.340	0.359	R ²	0.039	0.154	0.390	0.755	0.644		
N	1605	1589	1547	1484	1358	N	1361	1345	1303	1240	1114		

▶ $0.08 \times 2 \times 1 \times 252 \approx 43\%$ annualized EUR/USD return!

	1 week	1 month	3 months	6 months	1 year		1 week	1 month	3 months	6 months	1 year		
Panel	A: no con	trols				Panel	B: contro	ling for IR	D				
ICD_t	0.749**	0.673*	0.667***	0.840***	0.691***	ICD_t	0.794**	0.670*	0.716***	0.933***	0.683***		
t-stat	[1.963]	[1.905]	[2.691]	[3.656]	[5.477]	t-stat	[2.039]	[1.888]	[2.903]	[4.180]	[4.566]		
R^2	0.008	0.031	0.103	0.314	0.378	R^2	0.009	0.029	0.115	0.375	0.391		
N	1663	1647	1605	1542	1416	N	1605	1589	1547	1484	1358		
Panel	C: control	lling for liq	uidity			Panel	D: contro	lling for un	certainty				
ICD_t	0.802**	0.644*	0.646**	0.861***	0.689***	ICD _t	0.984**	0.766**	0.839***	1.030***	0.548***		
t-stat	[2.073]	[1.825]	[2.465]	[3.655]	[6.488]	t-stat	[2.416]	[2.252]	[3.720]	[8.103]	[2.762]		
R^2	0.013	0.056	0.125	0.330	0.459	R ²	0.023	0.090	0.292	0.652	0.503		
N	1635	1619	1577	1514	1388	N	1377	1361	1319	1256	1130		
Panel	Panel E: controlling for global factors						Panel F: controlling for all						
ICD_t	0.783**	0.673*	0.715***	0.920***	0.713***	ICD _t	0.986**	0.726**	0.840***	1.080***	0.569***		
t-stat	[2.013]	[1.893]	[2.833]	[3.978]	[5.383]	t-stat	[2.408]	[2.199]	[3.724]	[10.053]	[5.367]		
\mathbb{R}^2	0.017	0.031	0.111	0.340	0.359	\mathbb{R}^2	0.039	0.154	0.390	0.755	0.644		
N	1605	1589	1547	1484	1358	N	1361	1345	1303	1240	1114		

- ▶ $0.08 \times 2 \times 1 \times 252 \approx 43\%$ annualized EUR/USD return!
- ► Impementable trading strategy: distribution of returns of such strategy, Sharpe ratio, maximum draw-down, etc?

	1 week	1 month	3 months	6 months	1 year		1 week	1 month	3 months	6 months	1 year		
Panel	A: no con	trols				Panel	B: contro	lling for IR	D				
ICD_t	0.749**	0.673*	0.667***	0.840***	0.691***	ICD _t	0.794**	0.670*	0.716***	0.933***	0.683***		
t-stat	[1.963]	[1.905]	[2.691]	[3.656]	[5.477]	t-stat	[2.039]	[1.888]	[2.903]	[4.180]	[4.566]		
\mathbb{R}^2	0.008	0.031	0.103	0.314	0.378	\mathbb{R}^2	0.009	0.029	0.115	0.375	0.391		
N	1663	1647	1605	1542	1416	N	1605	1589	1547	1484	1358		
Panel	Panel C: controlling for liquidity						Panel D: controlling for uncertainty						
ICD_t	0.802**	0.644*	0.646**	0.861***	0.689***	ICD,	0.984**	0.766**	0.839***	1.030***	0.548***		
t-stat	[2.073]	[1.825]	[2.465]	[3.655]	[6.488]	t-stat	[2.416]	[2.252]	[3.720]	[8.103]	[2.762]		
\mathbb{R}^2	0.013	0.056	0.125	0.330	0.459	R ²	0.023	0.090	0.292	0.652	0.503		
N	1635	1619	1577	1514	1388	N	1377	1361	1319	1256	1130		
Panel	Panel E: controlling for global factors						Panel F: controlling for all						
ICD_t	0.783**	0.673*	0.715***	0.920***	0.713***	ICD_t	0.986**	0.726**	0.840***	1.080***	0.569***		
t-stat	[2.013]	[1.893]	[2.833]	[3.978]	[5.383]	t-stat	[2.408]	[2.199]	[3.724]	[10.053]	[5.367]		
\mathbb{R}^2	0.017	0.031	0.111	0.340	0.359	\mathbb{R}^2	0.039	0.154	0.390	0.755	0.644		
N	1605	1589	1547	1484	1358	N	1361	1345	1303	1240	1114		

- ▶ $0.08 \times 2 \times 1 \times 252 \approx 43\%$ annualized EUR/USD return!
- ► Impementable trading strategy: distribution of returns of such strategy, Sharpe ratio, maximum draw-down, etc?
- OOS tests of forecast accuracy
 - vs. random walk model (done in the paper)
 - vs. VRP predictive model
 - ▶ how about using VRP + ICD?

$$ICD_{i,t} = a + bX_{i,t} + cY_t + \epsilon_{i,t}$$

$$ICD_{i,t} = a + bX_{i,t} + cY_t + \epsilon_{i,t}$$

 \nearrow i's sovereign risk associated with \searrow in $ICD_{i,t}$ – why use the EUR as opposed to the USD contract?

$$ICD_{i,t} = a + bX_{i,t} + cY_t + \epsilon_{i,t}$$

- \nearrow *i*'s sovereign risk associated with \searrow in $ICD_{i,t}$ why use the EUR as opposed to the USD contract?
- ▶ \nearrow in FX options' implied vols associated with \nearrow in $ICD_{i,t}$ can be rationalized by state of the art CDS quanto models
 - Stochastic default intensity process λ_t
 - ▶ Stochastic FX rates X_t (locally) correlated with λ_t
 - FX jump conditional on default
 - ightharpoonup Comparative static: higher σ_X yields higher CDS quanto spread

$$ICD_{i,t} = a + bX_{i,t} + cY_t + \epsilon_{i,t}$$

- \nearrow i's sovereign risk associated with \searrow in $ICD_{i,t}$ why use the EUR as opposed to the USD contract?
- ▶ \nearrow in FX options' implied vols associated with \nearrow in $ICD_{i,t}$ can be rationalized by state of the art CDS quanto models
 - Stochastic default intensity process λ_t
 - ▶ Stochastic FX rates X_t (locally) correlated with λ_t
 - FX jump conditional on default
 - ightharpoonup Comparative static: higher σ_X yields higher CDS quanto spread
- ► Why not using country *i*'s GDP as explanatory variable?

 Large country default should have larger impact on EUR/USD than small country default, everything else equal

ICD_T Definition/Interpretation

- Basic model
 - ▶ *P_i*: all-upfront CDS premium (in % of initial notional) for contract in currency *i*
 - X: exchange rate (EUR/USD)
 - R: recovery rate upon credit event
 - T: contract maturity; τ: credit event time
 - $ightharpoonup r_t$: USD short term rate process

ICD_T Definition/Interpretation

- Basic model
 - P_i: all-upfront CDS premium (in % of initial notional) for contract in currency i
 - X: exchange rate (EUR/USD)
 - R: recovery rate upon credit event
 - ▶ T: contract maturity; τ : credit event time
 - ▶ r_t: USD short term rate process
- ▶ If no market segmentation between USD and EUR contract:

$$P_{\textit{USD},\textit{T}} = \hat{\mathbb{E}}\left[e^{-\int_0^{\tau} r_{\text{S}} ds} \mathbf{1}_{\{\tau < T\}} (1-\textit{R})\right] \qquad \quad P_{\textit{EUR},\textit{T}} = \hat{\mathbb{E}}\left[e^{-\int_0^{\tau} r_{\text{S}} ds} \mathbf{1}_{\{\tau < T\}} (1-\textit{R}) \frac{X_{\tau}}{X_0}\right]$$

*ICD*_T Definition/Interpretation

- Basic model
 - P_i: all-upfront CDS premium (in % of initial notional) for contract in currency i
 - X: exchange rate (EUR/USD)
 - R: recovery rate upon credit event
 - ▶ T: contract maturity; τ : credit event time
 - ▶ r_t: USD short term rate process
- If no market segmentation between USD and EUR contract:

$$P_{\text{USD},\,T} = \hat{\mathbb{E}}\left[e^{-\int_0^T r_{\text{S}} ds} \mathbf{1}_{\{\tau < T\}} (1-R)\right] \qquad P_{\text{EUR},\,T} = \hat{\mathbb{E}}\left[e^{-\int_0^T r_{\text{S}} ds} \mathbf{1}_{\{\tau < T\}} (1-R) \frac{X_\tau}{X_0}\right]$$

▶ Thus, ICD_T defined as:

$$\textit{ICD}_{\textit{T}} = 1 - \frac{P_{\textit{EUR},\textit{T}}}{P_{\textit{USD},\textit{T}}} = 1 - \frac{\mathbb{\hat{E}}\left[e^{-\int_{0}^{T}\textit{r}_{\textit{S}}\textit{ds}}(1-R)\frac{X_{\textit{T}}}{X_{0}}|\tau < T\right]}{\mathbb{\hat{E}}\left[e^{-\int_{0}^{T}\textit{r}_{\textit{S}}\textit{ds}}(1-R)|\tau < T\right]}$$

▶ ICD_T = risk-neutral expected currency depreciation (between today and time τ) conditional on a credit event occurring at time $\tau < T$?

- ▶ ICD_T = risk-neutral expected currency depreciation (between today and time τ) conditional on a credit event occurring at time $\tau < T$?
- Yes if (set of sufficient conditions)
 - ▶ No market segmentation
 - ▶ US short term rates process $\{r_t\}_{t\geq 0}$, recovery rate R, and exchange rate X_t are *mutually* independent

$$ICD_T = \hat{\mathbb{E}}\left[\frac{X_0 - X_{\tau}}{X_0} \middle| \tau < T\right]$$

- ▶ ICD_T = risk-neutral expected currency depreciation (between today and time τ) conditional on a credit event occurring at time $\tau < T$?
- Yes if (set of sufficient conditions)
 - No market segmentation
 - ▶ US short term rates process $\{r_t\}_{t\geq 0}$, recovery rate R, and exchange rate X_t are *mutually* independent

$$ICD_T = \hat{\mathbb{E}}\left[\frac{X_0 - X_{\tau}}{X_0} \middle| \tau < T\right]$$

► *ICD_T* does not measure the FX jump upon a sovereign defaulting (gap risk that dealers care about)

- ▶ ICD_T = risk-neutral expected currency depreciation (between today and time τ) conditional on a credit event occurring at time $\tau < T$?
- Yes if (set of sufficient conditions)
 - No market segmentation
 - ▶ US short term rates process $\{r_t\}_{t\geq 0}$, recovery rate R, and exchange rate X_t are *mutually* independent

$$ICD_T = \hat{\mathbb{E}}\left[\frac{X_0 - X_{\tau}}{X_0} \middle| \tau < T\right]$$

- ► *ICD_T* does not measure the FX jump upon a sovereign defaulting (gap risk that dealers care about)
- ► *ICD_T* does not measure the difference between (a) the FX rate conditional on a default and (b) the FX rate conditional on no default within *T* periods

Assume $r_t = r$ is constant, but assume some correlation between R and X_t

$$\mathit{ICD}_{\mathcal{T}} = 1 - \frac{\hat{\mathbb{E}}\left[(1-R) \frac{X_{\mathcal{T}}}{X_0} | \tau < T \right]}{\hat{\mathbb{E}}\left[1-R | \tau < T \right]} = \hat{\mathbb{E}}\left[\frac{X_0 - X_{\tau}}{X_0} \left| \tau < T \right. \right] + \frac{\hat{\mathrm{côv}}\left(R, \frac{X_{\tau}}{X_0} | \tau < T \right)}{1-\hat{\mathbb{E}}\left[R | \tau < T \right]}$$

Assume $r_t = r$ is constant, but assume some correlation between R and X_t

$$\mathit{ICD}_{\mathcal{T}} = 1 - \frac{\hat{\mathbb{E}}\left[\left(1 - R\right)\frac{X_{\mathcal{T}}}{X_{0}}|\tau < T\right]}{\hat{\mathbb{E}}\left[1 - R|\tau < T\right]} = \hat{\mathbb{E}}\left[\frac{X_{0} - X_{\tau}}{X_{0}}\left|\tau < T\right\right] + \frac{\hat{\mathsf{côv}}\left(R, \frac{X_{\tau}}{X_{0}}|\tau < T\right)}{1 - \hat{\mathbb{E}}\left[R|\tau < T\right]}$$

 Reasonable to assume that larger FX depreciations are associated with lower recovery rates

Assume $r_t = r$ is constant, but assume some correlation between R and X_t

$$\mathit{ICD}_{\mathcal{T}} = 1 - \frac{\hat{\mathbb{E}}\left[\left(1 - R\right)\frac{X_{\mathcal{T}}}{X_{0}}|\tau < T\right]}{\hat{\mathbb{E}}\left[1 - R|\tau < T\right]} = \hat{\mathbb{E}}\left[\frac{X_{0} - X_{\tau}}{X_{0}}\left|\tau < T\right\right] + \frac{\operatorname{côv}\left(R, \frac{X_{\tau}}{X_{0}}|\tau < T\right)}{1 - \hat{\mathbb{E}}\left[R|\tau < T\right]}$$

- Reasonable to assume that larger FX depreciations are associated with lower recovery rates
- Magnitude of that term? Assume

$$\begin{split} \hat{\mathbb{E}}\left(R|\tau < T\right) &= 40\% \\ \hat{\sigma}\left(R|\tau < T\right) &= 10\% \\ \hat{\sigma}\left(\frac{X_{\tau}}{X_{0}} \bigg| \tau < T\right) &= 10\% \\ \text{côrr}\left(R, \frac{X_{\tau}}{X_{0}} \bigg| \tau < T\right) &= 50\% \end{split}$$

Assume $r_t = r$ is constant, but assume some correlation between R and X_t

$$\mathit{ICD}_{\mathcal{T}} = 1 - \frac{\hat{\mathbb{E}}\left[\left(1 - R\right)\frac{X_{\mathcal{T}}}{X_{0}}|\tau < T\right]}{\hat{\mathbb{E}}\left[1 - R|\tau < T\right]} = \hat{\mathbb{E}}\left[\frac{X_{0} - X_{\tau}}{X_{0}}\left|\tau < T\right\right] + \frac{\hat{\mathsf{cov}}\left(R, \frac{X_{\tau}}{X_{0}}|\tau < T\right)}{1 - \hat{\mathbb{E}}\left[R|\tau < T\right]}$$

- Reasonable to assume that larger FX depreciations are associated with lower recovery rates
- Magnitude of that term? Assume

$$\begin{split} \hat{\mathbb{E}}\left(R|\tau < T\right) &= 40\% \\ \hat{\sigma}\left(R|\tau < T\right) &= 10\% \\ \hat{\sigma}\left(\frac{X_{\tau}}{X_{0}}\middle|\tau < T\right) &= 10\% \\ \text{côrr}\left(R,\frac{X_{\tau}}{X_{0}}\middle|\tau < T\right) &= 50\% \end{split}$$

▶ Correction term ≈ 0.80% small. Good!

► *ICD_T* as *the* risk-neutral expected currency depreciation conditional on a default?

- ► ICD_T as the risk-neutral expected currency depreciation conditional on a default?
- ▶ What if market segmentation, meaning that there is not *one*, but *several* risk-neutral measures?

- ► *ICD_T* as *the* risk-neutral expected currency depreciation conditional on a default?
- ► What if market segmentation, meaning that there is not *one*, but *several* risk-neutral measures?
- Quanto spreads mostly driven by technicals

- ► *ICD_T* as *the* risk-neutral expected currency depreciation conditional on a default?
- ▶ What if market segmentation, meaning that there is not *one*, but *several* risk-neutral measures?
- Quanto spreads mostly driven by technicals
 - EUR CDS contracts
 - Negative basis traders and CVA books hedging counterparty risk (driving EUR CDS prot. buying flows)
 - CLN flows (dealers driving EUR CDS prot. selling flow)
 - Low volumes, liquidity impacted by 2011 European reg. banning naked shorts

- ► *ICD_T* as *the* risk-neutral expected currency depreciation conditional on a default?
- ▶ What if market segmentation, meaning that there is not *one*, but *several* risk-neutral measures?
- Quanto spreads mostly driven by technicals
 - EUR CDS contracts
 - Negative basis traders and CVA books hedging counterparty risk (driving EUR CDS prot. buying flows)
 - CLN flows (dealers driving EUR CDS prot. selling flow)
 - Low volumes, liquidity impacted by 2011 European reg. banning naked shorts
 - USD CDS contracts dominated by
 - Macro hedge funds (mostly buyers of USD CDS prot.)

- ► *ICD_T* as *the* risk-neutral expected currency depreciation conditional on a default?
- ▶ What if market segmentation, meaning that there is not *one*, but *several* risk-neutral measures?
- Quanto spreads mostly driven by technicals
 - EUR CDS contracts
 - Negative basis traders and CVA books hedging counterparty risk (driving EUR CDS prot. buying flows)
 - ► CLN flows (dealers driving EUR CDS prot. selling flow)
 - Low volumes, liquidity impacted by 2011 European reg. banning naked shorts
 - USD CDS contracts dominated by
 - Macro hedge funds (mostly buyers of USD CDS prot.)
 - Quanto positions very expensive for bank from a capital standpoint (CDS not nettable, large implied FX exposure)

- ► *ICD_T* as *the* risk-neutral expected currency depreciation conditional on a default?
- What if market segmentation, meaning that there is not one, but several risk-neutral measures?
- Quanto spreads mostly driven by technicals
 - EUR CDS contracts
 - Negative basis traders and CVA books hedging counterparty risk (driving EUR CDS prot. buying flows)
 - CLN flows (dealers driving EUR CDS prot. selling flow)
 - Low volumes, liquidity impacted by 2011 European reg. banning naked shorts
 - USD CDS contracts dominated by
 - Macro hedge funds (mostly buyers of USD CDS prot.)
 - Quanto positions very expensive for bank from a capital standpoint (CDS not nettable, large implied FX exposure)
- ► Change in standard ISDA definitions (2003 vs. 2014, which trades wider)

